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Abstract. The complex eikonal equation in (3 + 1) dimensions is investigated. It is shown that this equa-
tion generates many multi-knot configurations with an arbitrary value of the Hopf index. In general, these
eikonal knots do not have the toroidal symmetry. For example, a solution with the topology of the trefoil
knot is found. Moreover, we show that the eikonal knots provide an analytical framework in which qual-
itative (shape, topology) as well as quantitative (energy) features of the Faddeev–Niemi hopfions can be
captured. This might suggest that the eikonal knots can be helpful in the construction of approximated
(but analytical) knotted solutions of the Faddeev–Skyrme–Niemi model.

1 Introduction

Topological solitons i.e. stable, particle-like objects with a
non-vanishing topological charge occur in various contexts
of theoretical physics, for example, as magnetic monopoles
and vortices seem to play crucial role in the problem of
confinement of the quarks in the quantum chromodynam-
ics [1,2]. On the other hand, it is believed that other types
of solitons, the so-called cosmic strings and domain walls,
are important for the time evolution of the universe and
formation of long range structures [3,4]. Moreover, as D-
branes, they appear in string theory as well. They are
observed also in various experiments in condensed matter
physics (see for instance 3He [5] and 4He [6] quantum liq-
uids). In fact, the richness of the possible application of
solitons is enormous.

In particular, hopfions i.e. topological solitons with the
non-trivial Hopf indexQH ∈ π3(S2) have been recently an-
alyzed in a connection with the non-perturbative regime
of gluodynamics. Namely, it has been suggested by Fad-
deev and Niemi [8] that particles built only of the gauge
field, so-called glueballs, can be described as knotted soli-
tons with a non-vanishing value of the Hopf number. It
is a natural extension of the standard flux-tube picture
of mesons where, due to the dual Meissner effect, quark
and anti-quark are confined by a tube of the gauge field.
In the case of absence of quark sources, such a flux-tube
should form a knotted, closed loop. Then, stability of the
configuration would be guaranteed by a non-zero value of
the topological charge. A model (the so-called Faddeev–
Skyrme–Niemi model [7]), based on an effective classical
three-component unit field (which is believed to represent
all infrared important degrees of freedom of the full quan-
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tum theory) has been proposed [8–11]. In fact, using some
numerical methods many topological solitons with a Hopf
index have been found [12–14]. However, since all Fadd-
eev–Niemi knots are known only in numerical form some
crucial questions (e.g. their stability) are still far from a
satisfactory understanding. The situation is even worse.
For a particular value of the Hopf index it has not been
proved which knot gives the stable configuration. Because
of the lack of the analytical solutions of the Faddeev–Skyr-
me–Niemi model such problems as interaction of hopfions,
their scattering or the formation of bound states have not
been solved yet (for some numerical results see [15]).

On the other hand, in order to deal with hopfions in
an analytical way, many toy models have been constructed
[16–19]. In general, all of them are invariant under the scal-
ing transformation. This not only provides the existence
of hopfions but also gives an interesting way to circum-
vent the Derrick theorem [20]. This idea is quite old and
has originally been proposed by Deser et al. [21]. As a
result, topological hopfions with arbitrary Hopf number
have been obtained. Unfortunately, contrary to Faddeev–
Niemi knots, all toy hopfions possess toroidal symmetry
i.e. surfaces of constant n3 are toruses (they are called “un-
knots”). This strongly restricts the applicability of these
models.

The main aim of the present paper is to find a system-
atic way of construction of analytical configurations with
the Hopf charge, which in general do not have the toroidal
symmetry and can form really knotted structures, as for
instance the trefoil knot observed in the Faddeev–Skyr-
me-Niemi effective model. Moreover, our approach allows
us to construct multi-knot configurations, where knotted
solutions are linked and form even more complicated ob-
jects.
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Moreover, though obtained here knots do not satisfy
the Faddeev–Skyrme–Niemi equations of motion, there are
arguments which allow us to believe that our solutions
(we call them eikonal knots) can have something to do
with Faddeev–Niemi hopfions. In our opinion this paper
can be regarded as a first step in construction of analyt-
ical topological solutions in the Faddeev–Skyrme–Niemi
model. The relation between the eikonal knots and the
Faddeev–Niemi hopfions will be discussed in more detail
in the last section.

Our paper is organized as follows. In Sect. 2 we test our
method taking into consideration the eikonal equation in
(2 + 1) Minkowski space-time. In this case, the obtained
multi-soliton configurations appear to be solutions of the
well-known O(3) sigma model. Thus, we are able to calcu-
late the energy of the solitons and analyze the Bogomolny
inequality between energy and the pertinent topological
charge i.e. the winding number. We show that all multi-
soliton solutions saturate this inequality regardless of the
number and positions of the solitons. It must be under-
lined that all results of this section are standard and very
well known. Nonetheless, we include this part to give a
pedagogical introduction to the next section.

Section 3 is devoted to the investigation of knotted so-
lutions. Due to that we solve the eikonal equation in the
three dimensional space and find in an analytical form
multi-knot solutions with arbitrary Hopf index. However,
in this case no Lagrangian which possesses all these config-
urations as solutions of the pertinent equations of motion
is known. Only one of our knots can be achieved in the
Nicole [16] or Aratyn–Ferreira–Zimerman [17] model.

Finally, the connection between eikonal knots and
Faddeev–Niemi hopfions is discussed. We argue that our
solutions could give a reasonable approximation to the
knotted solitons of the Faddeev–Skyrme–Niemi model.

2 (2 + 1) dimensions: O(3) sigma model

Let us start and introduce the basic equation of the pre-
sent paper, i.e. the complex eikonal equation

(∂νu)2 = 0 (1)

in (2 + 1) or (3 + 1) dimensional space-time, where u is
a complex scalar field. It is known that such a field can
be related, by means of the standard stereographic pro-
jection, with an unit three-component vector field n ∈ S2.
Namely,

n =
1

1 + |u|2 (u+ u∗,−i(u− u∗), |u|2 − 1). (2)

This vector field defines the topological contents of the
model. Depending on the number of space dimensions and
asymptotic conditions this field can be treated as a map
with π2(S2) or π3(S2) topological charge.

In this section we focus on the eikonal equation in
(2+1) dimensions. The main aim of this section is to con-
sider how the eikonal equation generates multi-soliton con-
figurations. From our point of view the two-dimensional

case can be regarded as a toy model which should give us
better understanding of the much more complicated and
physically interesting three dimensional case.

In order to find solutions of (1), we introduce the polar
coordinates r and φ and assume the following Ansatz:

u =
N∑
i=1

fi(r)eikiφ + u0, (3)

which is a generalization of the standard one-soliton An-
satz. Here N = 1, 2, 3, ... and ki are integer numbers. Then
u is a single valued function. Additionally u0 is a complex
constant. After substituting it into the eikonal equation
(1) one derives

N∑
i=1

(
f ′2
i − k2

i

r2
f2
i

)
e2ikiφ

+ 2
∑
j<i

(
f ′
jf

′
i − kjki

r2
fjfi

)
ei(ki+kj)φ = 0. (4)

One can immediately check that it is solved by the follow-
ing two functions, parameterized by the positive integer
numbers kj :

fj = Ajr
kj (5)

and
fj = Bj

1
rkj

. (6)

Here Aj and Bj are arbitrary, in general complex, con-
stants. We express them in more useful polar form, Aj =
ajeiψi , where aj , ψj are some real numbers. Thus, the so-
lution reads

u =
N∑
j=0

ajr
±kj eikjφeiψj , (7)

where the constant u0 = a0eiψ0 with n0 = 0 has been
included as well.

From now on, we restrict our investigation only to the
family of solutions given by (5). In other words we have
derived the following configuration of the unit vector field:

n1 =
2
∑N
i=0 air

ki cos(kiφ+ ψi)∑N
i,j=0 r

ki+kj cos[(ki − kj)φ+ (ψi − ψj)] + 1
, (8)

n2 =
2
∑N
i=0 air

ki sin(kiφ+ ψi)∑N
i,j=0 r

ki+kj cos[(ki − kj)φ+ (ψi − ψj)] + 1
, (9)

n3 =

∑N
i,j=0 aiajr

ki+kj cos[(ki − kj)φ+ (ψi − ψj)] − 1∑N
i,j=0 aiajr

ki+kj cos[(ki − kj)φ+ (ψi − ψj)] + 1
.

(10)

Let us briefly analyze the solutions obtained above.
First of all one could ask about the topological charge

of the solutions. The corresponding value of the winding
number might be calculated from the standard formula

Q =
1
8π

∫
d2xεabn(∂an × ∂bn). (11)
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However, since the introduced Ansatz is nothing else but
a particular (polynomial) rational map one can take into
account the well-known fact that the topological charge
of any rational map of the form R(z) = p(z), where p is
a polynomial, is equal to the degree of this polynomial.
Thus

Q = max{ki, i = 1, ..., N}. (12)

Quite interesting, we can notice that the total topological
charge of these solutions is fixed by the asymptotically
leading term i.e. by the biggest value of ki, whereas the
local distribution of the topological solitons depends on
all ki numbers.

In fact, if we look at our solution at large r then the
vector field wraps Q times around the origin. As we dis-
cuss below, our configuration appears to be a system of L
solitons with a topological charge Ql, l = 1, ..., L, where
L depends on N, ki and a0. The total charge is a sum of
L individual charges,

∑
l=1,...,L

Ql = Q.

Let us now find the position of the solitons. It is defined
as a solution of the following condition:

n3 = −1.

Thus the points of location of the solitons fulfil the
equation

N∑
i,j=0

aiajr
ki+kj cos[(ki − kj)φ+ (ψi − ψj)] = 0. (13)

Unfortunately, we are not able to find an exact solution
of (13) for arbitrary N . Of course, this can be easily done
using some numerical methods. Let us restrict our consid-
eration to the two simplest but generic cases.

We begin our analysis with N = 1. This case, simply
enough to find exact solutions, admits various multi-soli-
ton configurations. One can find that examples with amore
complicated Ansatz, i.e. larger N , seem not to differ dras-
tically. The main features remain unchanged.

For N = 1, (13) takes the form

a2
1r

2k1 + 2a1a0 cos[k1φ+ (ψ1 − ψ0)] + a2
0 = 0. (14)

We see that there are n1 solitons, each with unit topo-
logical number, located symmetrically on the circle with
radius

r =
(
a1

a0

) 1
k1

, (15)

in the points

φ =
π − (ψ1 − ψ0) + 2lπ

k1
, (16)

where l = 0, 1, ..., |k1| − 1.

Another simple but interesting example is the case
with N = 2 and a0 = 0. Then (13) reads

2∑
i,j=1

aiajr
ki+kj cos [(ki − kj)φ+ (ψi − ψj)] = 0. (17)

The solitons are located in the following points:

r = 0 (18)

and

r =
(
a1

a2

) 1
k2−k1

, φ =
π − (ψ1 − ψ2) + 2lπ

k1 − k2
, (19)

where l = 0, 1, ..., |k1 −k2|−1. It is clearly seen that there
are two different types of solitons. At the origin, we have
a soliton with the winding number equal to min(k1, k2).
Around it, there are |k1−k2| satellite solitons with an unit
topological charge.

In Figs. 1–4 such soliton ensembles are demonstrated
(we plot the n3 component). For reasons of simplicity, we
assume ψ1 = ψ2 = 0 and a1 = a2 = 1. We see that there is

Fig. 1. k1 = 1 and k2 = 2

Fig. 2. k1 = 1 and k2 = 3
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Fig. 3. k1 = 1 and k2 = 5

Fig. 4. k1 = 1 and k2 = 9

a soliton with Q = 1 at the origin. Additionally, one, two,
four or eight single satellite solitons are shown. In Fig. 5
the case with k1 = 2 and k2 = 4 is plotted. It is very
similar to Fig. 2 but now, the soliton located at the origin
is “thicker” – it possesses Q = 2 topological charge. One
can easily continue it and find more complicated multi-
soliton configurations.

It can be shown that the presented configurations are
also solutions of a dynamical system i.e. the well-known
non-linear O(3) sigma model

L =
1
2
(∂µn)2. (20)

This fact permits us to call the solutions of the two-
dimensional eikonal equation solitons.

In order to show this we take advantage of the stere-
ographic projection (2). Then the Lagrangian (20) takes
the form

L =
2

(1 + |u|2)2 ∂µu∂
µu∗. (21)

Fig. 5. k1 = 2 and k2 = 4

The pertinent equation of motion reads

∂µ∂
µu

(1 + |u|2)2 − 2(∂νu)2
u∗

(1 + |u|2)3 = 0. (22)

It is straightforward to see that it is possible to introduce
a submodel defined by the following two equations: a dy-
namical equation,

∂µ∂
µu = 0, (23)

and a non-dynamical constraint,

(∂νu)2 = 0, (24)

which is just the eikonal equation. One can notice that
every solution of the submodel fulfills the field equation for
the original model as well. However, it has to be underlined
that the space of solutions of the original model is much
larger than the restricted theory.

Inserting the Ansatz (3) into the first formula, (23),
we obtain

N∑
j=1

eikjφ

(
1
r
∂r(rf ′

j) − k2
j

r2
fj

)
= 0. (25)

One can easily check that the solutions (5) and (6) satisfy
this equation. This proves that our multi-soliton configu-
rations are not only solutions of the eikonal equation but
also are generated from the Lagrangian (20). Thus, we are
able to calculate the corresponding energy. It is easy to see
that all solutions possess a finite total energy. In fact, the
T00 part of the energy-momentum tensor,

T00 = (26)

2
∑N
i,j=1 aiajkikjr

ki+kj−2 cos[(ki − kj)φ+ (ψi − ψj)](∑N
i,j=1 aiajr

ki+kj cos[(ki − kj)φ+ (ψi − ψj)] + 1
)2 ,

does not have any point-like singularities and tends to
zero for r → ∞ sufficiently fast to assure finiteness of the
energy.
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We explicitly calculate the total energy in the case
N = 2. Using the previously obtained solution we find
that

E = 2
∫ ∞

0

∫ 2π

0

rdrdφ
r2

(27)

× k2
1r

2k1 + k2
2r

2k2 + 2k1k2r
k1+k2 cos(k1 − k2)φ

(1 + r2k1 + r2k2 + 2rk1+k2 cos(k1 − k2)φ)2
.

This integral can be evaluated and one obtains

E = 4πmax(k1, k2). (28)

It is equivalent to the following relation:

E = 4πQ. (29)

The multi-soliton solutions saturate the famous energy–
charge inequality for the O(3) sigma model i.e. E ≥ 4π|Q|.
This means that they are stable. It is not possible to have
less energy solutions with a fixed value of the total topo-
logical number. It is worth to stress that a single soliton
solution with n topological index has exactly the same
energy as a collection of n solitons with an unit charge.
Moreover, the energy of the multi-soliton solutions does
not depend on the relative position of the solitons. It gives
us the possibility to analyze scattering of the solitons us-
ing the standard moduli-space method.

As it was said before, all results presented in this sec-
tion are well known. However, we have reproduced them
from a new point of view, i.e. using the complex eikonal
equation. It is nothing surprising if we observe that the
eikonal equation in the two dimensions leads to a gener-
alization of the Cauchy–Riemann equations:

uzuz̄ = 0, (30)

where z = x + iy. Since all baby skyrmions are rational
functions of the z variable (or z̄) they thus can be in the
natural way found in the eikonal equation.

3 (3 + 1) dimensions: the eikonal knots

Let us now turn to the complex scalar field u living in 3+1
dimensional Minkowski space-time. Analogously as in the
previous section such a complex field can be used, via
the stereographic projection, to parameterize the three-
component unit vector field n:

n =
1

1 + |u|2 (u+ u∗,−i(u− u∗), |u|2 − 1). (31)

Due to the fact that all static configurations, such that
n → n0 =

−−−→
const. for |x| → ∞, are maps n : R3 ∪ {∞} →

S2, they can be divided into disconnected classes and char-
acterized by a pertinent topological charge, the so-called
Hopf index QH ∈ π3(S2). In this section we will show
how such configurations can be generated by means of the
complex eikonal equation in three space dimensions1,

∂iu∂
iu = 0. (32)

1 The appearance of knots as solutions of the complex eikonal
equation has originally been observed by Adam [22].

In order to find exact solutions we assume toroidal symme-
try of the problem and introduce the toroidal coordinates

x =
ã

q
sinh η cosφ,

y =
ã

q
sinh η sinφ,

z =
ã

q
sin ξ, (33)

where q = cosh η − cos ξ and ã > 0 is a constant of the
dimension of length fixing the scale. Moreover, we propose
a generalized version of the Aratyn–Ferreira–Zimerman–
Adam Ansatz [17,22] given by the following formula:

u =
N∑
j=1

fj(η)ei(mjξ+kjφ) + c, (34)

where mi, ki are integer numbers whereas the fi are un-
known real functions depending only on the η coordinate.
Additionally, c is a complex number. Inserting our Ansatz
(34) into the eikonal equation (32) one derives

0 =
N∑
j=1

e2i(mjξ+kjφ)

(
f ′2
j −

(
m2
j +

k2
j

sinh2 η

)
f2
j

)

+ 2
∑
j<l

ei((mj+ml)ξ+(kj+kl)φ)

×
(
f ′
jf

′
l −

(
mjml +

kjkl

sinh2 η

)
fjfl

)
. (35)

Thus the unknown shape functions fi should obey the
following equations:

f ′2
j −

(
m2
j +

k2
j

sinh2 η

)
f2
j = 0 (36)

for j = 1, ..., N , and

f ′
jf

′
l −

(
mjml +

kjkl

sinh2 η

)
fjfl = 0 (37)

for all j �= l. The first set of equations can be rewritten in
the form

f ′
j = ±

√√√√(m2
j +

k2
j

sinh2 η

)
fj . (38)

In the case of the positive sign we obtain solutions which
have originally been found by Adam [22]:

fj = Aj sinh|kj | η

(
|mj | cosh η +

√
k2
j +m2

j sinh2 η
)|mj |

(
|kj | cosh η +

√
k2
j +m2

j sinh2 η
)|kj | .

(39)
They correspond to the following asymptotic value of the
unit vector field:

n → 1
1 + |c|2 (c+ c∗,−i(c− c∗), |c|2 − 1) as η → 0 (40)
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and
n → (0, 0, 1) as η → ∞. (41)

For the minus sign the solutions read

fj =
Bj

sinh|kj | η

(
|kj | cosh η +

√
k2
j +m2

j sinh2 η
)|kj |

(
|mj | cosh η +

√
k2
j +m2

j sinh2 η
)|mj | ,

(42)
and the asymptotic behavior of the unit field is

n → (0, 0, 1) as η → 0 (43)

and

n → 1
1 + |c|2 (c+c∗,−i(c−c∗), |c|2−1) as η → ∞. (44)

Let us now consider the second set of equations (37) and
express constants as before i.e. Aj = ajeiψj . We also take
advantage of the fact that every fi has to fulfill equation
(36). Then, inserting (38) into (37) we obtain√√√√(m2

j +
k2
j

sinh2 η

)√(
m2
l +

k2
l

sinh2 η

)
= mjml +

kjkl

sinh2 η
.

(45)
This leads to the relation

m2
jk

2
l +m2

l k
2
j = 2mjmlkjkl (46)

or
(mjkl −mlkj)2 = 0. (47)

Finally, we derive the consistency conditions relating the
integer constants included in Ansatz (34)

mj

kj
=
ml

kl
, j, l = 1, ..., N. (48)

In other words, our Ansatz (34) is a solution of the eikonal
equation (with functions f given by (39) or (42)) only if
the ratio between the parameters ki and mi is a constant
number.

It is easy to notice that one can find a more general
solution of the complex eikonal equation than the Ansatz.
In fact, using the simplest one-component solution with
m = k = 1

u0 =
1

sinh η
ei(ξ+φ), (49)

we are able to generate other solutions. It follows from the
observation that any function of this solution solves the
eikonal equation as well. Thus

u = F (u0), (50)

where F is any reasonable function, gives a new solu-
tion [22]. Now, our Ansatz can be derived by acting by
a polynomial function F on the fundamental solution u0
i.e. F (u0) = co + c1u+ ...+ cNu

N .

Calculation of the total Hopf index corresponding to
the above obtained solutions can be carried out analo-
gously as in the two-dimensional case. Then, one obtains

QH = −max{kimi, i = 1, ..., N}. (51)

Of course, it can be also found directly by calculation how
many times the vector field n wraps in the angular direc-
tions. For N = 1 and c0 = 0 we see that n wraps m
times around the ξ-direction and k times around the φ-
direction, giving QH = −mk. One can also see that for a
non-vanishing c (but still for the one-knot configuration)
the vector field behaves identically. Thus, the topological
charge is still QH = −mk. For the multi-knot case, one
has not only to add topological charges of the elementary
hopfions but also take into account the linking number. As
we discuss in the next subsection, this leads to the same
total Hopf index i.e. QH = −mk. Analogous calculations
can be carried out in the case of N = 2.

It is worth to stress that analogously to the winding
number in the O(3) sigma model in (2 + 1) dimensions,
the total Hopf index is fixed by the asymptotically leading
term in our Ansatz. The other components of the Ansatz
affect only the local topological structure of the solution.

The position of the solution can easily be found if we
recall that in the core of a knot the vector field takes the
value opposite to the one at spatial infinity:

n0 = −n∞, (52)

where
n∞ = lim

x→∞ n = lim
η→0

n. (53)

Then a knotted solution is represented by a curve corre-
sponding to n = n0.

In the further considerations we take the solution (42),
for which f → ∞ as η → 0 and n∞ = (0, 0, 1). Thus, the
core of a knot is located at n0 = (0, 0,−1). Therefore, it
is given by a curve being a solution to the equation

N∑
i,j=1

aiajgigj cos[(mi −mj)ξ + (ki − kj)φ+ (ψi − ψj)]

+ 2c0
N∑
i=1

aigi cos[miξ + kiφ+ (ψ1 − ψ2) + α0] + c20

= 0, (54)

where fi(η) = Aigi(η) and c = c0eiα0 . The simplest but
sufficiently interesting cases with N = 1 as well as N = 2
are analyzed below.

3.1 N = 1 case

For N = 1 the last equation can be rewritten in the fol-
lowing form:

a2g2 + 2c0ag cos[mξ + kφ+ ψ + α0] + c20 = 0. (55)

Thus, the knots are located at

g(η0) =
c0
a
, (56)
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Fig. 6. m = k = 1 and m = k = 2
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Fig. 7. m = k = 3 and m = k = 4

0

-1

0

1

0

0

-1

0

1

-1
0

1

-1
0
10

-1
0

1

Fig. 8. m = 1, k = 2 and m = 1, k = 3

mξ + kφ = π − ψ − α0 + 2πl, l = 0, 1, ..., L− 1.

Due to the fact that g is a monotonic function from ∞
to 0, there is exactly one η0 satisfying the upper condi-
tion. Thus, the obtained configuration is given by a closed
curve (or curves) (56) wrapped on a torus, η = η0. In
general, for fixed values of the parameters m, k one finds
that the number L of the elementary knots is equal to the
greatest common divisor m and k. The whole multi-knot
solution is a collection of such elementary knots which are
linked together. Of course, every elementary knot should
be treated in the same manner as the others so they all
carry the identical topological charge Qe = −pq, where
p, q are relative prime numbers and m

k = p
q . We imme-

diately see that the simple sum of all charges of elemen-
tary knots is not equal to the total topological number
Q = −km. In order to correctly calculate the topological
charge one has to take into account the linking numberNL
between the elementary knots as well. Finally, we derive

QH = K ·Qe −NL. (57)

The correctness of this formula will be checked in some
(but sufficiently general) cases. Let us discus some of the
obtained multi-knot configurations in detail. For simplic-
ity we assume ψ1 = ψ2 = 0, a1 = a2 = 1. In Fig. 6 the
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Fig. 9. m = 1, k = 4 and m = 1, k = 5

-1
0

1
-1

0

1
0

-1
0

1

-1 0
1

-1
0
1

0

-1 0
1

-1 0
1

-1
0
1

0

-1 0
1

Fig. 10. m = 2, k = 4 with elementary knots

simplest eikonal knot with m = k = 1 is presented. The
position of the knot is given by a circle and this config-
uration possesses toroidal symmetry. In the same figure
the case with m = k = 2 is demonstrated as well. As
one could expect such a configuration consists of two ele-
mentary knots with Qe = −1 (circles) which are linked to-
gether. The linking number isNL = 2 so this configuration
has the total charge Q = −4, which is in accordance with
the formula (57). Other multi-knot configurations built of
the elementary knots with Qe = −1 are plotted in Fig. 7
(m = k = 3 and m = k = 4). One can easily check that
(57) is fulfilled as well.

The more sophisticated case is shown in Fig. 8, where
a single knot solution for m = 1, k = 2 as well as for
m = 1, k = 3 is presented. In contradistinction to the
previously discussed knot this configuration does not have
the toroidal symmetry (of course, one can easily restore
the toroidal symmetry by setting c = 0). In Fig. 9 further
examples with m = 1, k = 4 and m = 1, k = 5 are shown.
Now, it is obvious how this type of knots (i.e. with R ≡
k
m ∈ N ) looks. They cross 2R times the xy-plane, or in the
other words they wrap R times “vertically” on the torus
η0. Another configuration with two elementary knots
is presented in Fig. 10. Also in this case relation (57) is
satisfied – the corresponding linking number is NL = 4
and Qe = −2. In Fig. 11 a knot with m = 1, k = 70 is
plotted. It is clearly visible that the knot is situated on a
torus. Another simple type of solutions can be obtained
for 1

R ∈ N . Such knots with m = 2, k = 1 and m =
3, k = 1 are shown in Fig. 12. Here, the knot wraps R
times but in the “horizontal” direction on the torus i.e.
around the z-axis. Knots with higher topological charges
(m = 4, k = 1 and m = 5, k = 1) are plotted in Fig. 13.
In Fig. 14 the simplest two-knot configuration of this type
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Fig. 11. m = 1, k = 70
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Fig. 12. m = 2, k = 1 and m = 3, k = 1
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Fig. 13. m = 4, k = 1 and m = 5, k = 1
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Fig. 14. m = 4, k = 2 with elementary knots

is demonstrated whereas in Fig. 15 one can find a solution
with m = 70, n = 1. It is straightforward to notice that,
in spite of the fact that the knots discussed above belong
to distinct topological classes, the curves describing their
position are topological equivalent to a simple circle.

More complicated and really knotted configurations
have been found for R = p

q , where p, q are relative prime
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Fig. 15. m = 70, k = 1
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Fig. 16. m = 2, k = 3 and m = 3, k = 2

-1
0

1
-1
0
1

0

-1
0

1

-1
0

1
-1
0
1

0

-1
0

1

Fig. 17. m = 2, k = 5 and m = 3, k = 4

numbers distinct from one. The simplest trefoil knots with
R = 3/2 and R = 2/3 are presented in Fig. 16. In both
cases the Hopf charge is QH = −6. In Fig. 17 further ex-
amples of knots with R = 2/5 as well as R = 3/4 are
plotted. In Fig. 18 a really highly knotted solution with
QH = −510 is presented. We see that any Hopf solution
with R = p

q wraps simultaneously q times around the z-
axis and p times around the circle η = ∞.

3.2 N = 2 case

Let us now consider the second simple case, i.e. we take
N = 2 and put c = 0. It enables us to construct a new
class of multi-knot configurations which differ from the
one previously described. Equation (54) takes the form

0 = a2
1g

2
1 + a2

2g
2
2

+ 2a1a2g1g2 (58)
× cos[(m1 −m2)ξ + (k1 − k2)φ+ (ψ1 − ψ2)].

One can solve it and obtain the position of the knots. In
this case we can distinguish two sorts of solutions. Namely,
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Fig. 18. m = 30, k = 17
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Fig. 19. m1 = k1 = 1, m2 = k2 = 2 and m1 = k1 = 1,
m2 = k2 = 3
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Fig. 20. m1 = 2, k1 = 4, m2 = 1, k2 = 2; m1 = 2, k1 = 6,
m2 = 1, k2 = 3

a central knot located at

η = ∞
and satellite knots

g1
g2

=
a2

a2
, (m1−m2)ξ+(k1−k2)φ = π−(ψ1−ψ2)+2lπ,

(59)
where l = 0, ..., |L1 −L2|−1. It should be noticed that the
condition g1

g2
= a2

a2
can always be satisfied. This is due to

the fact that g1/g2 is a function smoothly and monotoni-
cally interpolating between ∞ and 0 (of course if k1 �= k2).
From (59) we find that for a fixed value of the parameters
mi, ki there are |L1 − L2| knots: one in η = ∞ (circle)
and |L1 − L2| − 1 satellite knots (loops) which can take
various, quite complicated and topologically inequivalent
shapes. Additionally, one can observe that the Hopf index
of the central knot is Qc = −min{kimi, i = 1, ..., N}. In
Fig. 19 the simplest types of solutions, with m1 = k1 = 1,
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Fig. 21. m1 = 4, k1 = 2, m2 = 2, k2 = 1; m1 = 4, k1 = 6,
m2 = 2, k2 = 3

m2 = k2 = 2 and m1 = k1 = 1, m2 = k2 = 3 are demon-
strated. We see that they are very similar to the corre-
sponding solutions with N = 1 (see Figs. 6 and 7). More
complicated situations are plotted in Figs. 20 and 21. In all
configurations the central knot is clearly visible as a cir-
cle around origin, whereas knots known from the previous
subsection wrap around this central knot.

It is obvious that the solutions presented (even one-
knot configurations) do not possess toroidal symmetry.
Surfaces of a constant value of the third component n3 are
not (in general) toruses. In this manner they differ pro-
foundly from the standard knotted soliton configurations
previously presented in the literature [16,17,19]. Here, the
position of a knot depends on a (constant) value of the
radial coordinate η as well as on the angular coordinates
ξ, φ. To the best of our knowledge non-toroidal knots have
not been, in the exact form, presented in the literature yet.

One has to be aware that all knots found in this pa-
per are solutions of the complex eikonal equation only. No
Lagrangian is known which would give these multi-knot
configurations as solutions of the pertinent equations of
motion. They differ from toroidal solitons obtained re-
cently in the Aratyn–Ferreira–Zimerman (and its gener-
alizations) and the Nicole model. However, it is worth to
notice that the simplest one-knot state with k = m = 1,

u(η, ξ, φ) =
1

sinh η
ei(ξ+φ), (60)

is identical to the soliton with QH = −1 obtained in these
models [16,17]. As we do not know the form of the La-
grangian we are not able to calculate the energy corre-
sponding to the multi-knot solutions obtained. Thus, their
stability and saturation of the Vakulenko–Kapitansky in-
equality [23] are still open problems.

4 The eikonal knots
and the Faddeev–Niemi hopfions

In spite of the problems mentioned above our multi-knot
configurations become more physically interesting, and
potentially can have realistic applications, if one analyzes
them in connection with the Faddeev–Skyrme–Niemi ef-
fective model of the low energy gluodynamics:

L =
1
2
m2(∂µn)2 − 1

4e2
[n · (∂µn × ∂νn)]2. (61)
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It is straightforward to see that all finite energy solutions
in this model must tend to a constant n∞ at spatial infin-
ity. Then the field configurations being maps from S3 into
S2 can be divided in disconnected classes and character-
ized by the Hopf index. Indeed, many configurations with
a non-trivial topological charge, which appear to form
knotted structures have been numerically obtained [13,
14].

In order to reveal a close connection between the
eikonal knots and Faddeev–Niemi hopfions we rewrite the
equations of motion for the model (61) in terms of the
complex field u, (31) [17],

(1 + |u|2)∂µLµ − 2u∗(Lµ∂µu) = 0, (62)

where

Lµ = m2∂µu− 4
e2

Kµ

(1 + |u|2)2 ,

Kµ = (∂νu∂νu∗)∂µu− (∂νu)2∂µu∗. (63)

It has recently been observed [17] that such a model pos-
sesses an integrable submodel if the following constraint
is satisfied:

Lµ∂
µu = 0. (64)

Then, an infinite family of local conserved currents can
be constructed [24–27]. On the other hand, it is a well-
known fact from standard (1+1) and (2+1) soliton theory
that the existence of such a family of the currents usually
leads to soliton solutions with a non-trivial topology. Due
to that one should check whether also in the case of the
Faddeev–Skyrme–Niemi model the integrability condition
can give us some hints on how to construct knotted soli-
tons.

For the model (61) the integrability condition takes
the form

m2(∂νu)2 = 0. (65)

It vanishes if the mass is equal to zero or the eikonal equa-
tion is fulfilled. The first possibility is trivial since m = 0
means the absence of the kinetic term in the Lagrangian
(61) and no stable soliton solutions can be obtained due to
the instability under the scale transformation. Thus, the
eikonal equation appears to be the unique, non-trivial inte-
grability condition for the Faddeev–Skyrme–Niemi model.

However, it should be stressed that the full integrable
submodel consists of two equations. Namely, apart from
the integrability condition (64), also the dynamical equa-
tion has to be taken into account:

∂µ

[
m2∂µu− 4

e2
∂νu∂νu

∗

(1 + |u|2)2 ∂µu
]

= 0. (66)

The correct solutions of the Faddeev–Skyrme–Niemi
model have to satisfy both equations. Unfortunately, the
derived eikonal hopfions do not solve the dynamical equa-
tion and in consequence are not solutions of the Faddeev–
Skyrme–Niemi model. Nonetheless, the fact that they ap-
pear in a very natural way in the context of the Faddeev–
Skyrme–Niemi model i.e. just as solutions of the integra-
bility condition, might indicate a close relation between
them and Faddeev–Niemi hopfions.

This idea seems to be more realistic if we compare
the eikonal hopfions with the numerically found Faddeev–
Niemi hopfions [13,14]. It is striking that every hopfion
possesses an eikonal counterpart with the same topology
and a very similar shape.

Moreover, there is an additional argument which
strongly supports the idea that the eikonal knots might
applied in the construction of approximated Faddeev–
Niemi hopfions. It follows from the observation that the
eikonal knots, if inserted into the total energy integral cal-
culated for the Faddeev–Skyrme–Niemi model, give the
finite value of this integral. The situation is even better.
The lowest energy eikonal configurations are only approx-
imately 20% heavier than numerically derived hopfions.
Let us show this for the N = 1 Ansatz.

Indeed, the Faddeev–Skyrme–Niemi model gives, for
static configurations, the following total energy integral:

E = 2m2
∫

d3x
∇u∇u∗

(1 + |u|2)2

+
2
e2

∫
d3x

(∇u∇u∗)2 − (∇u)2(∇u∗)2

(1 + |u|2)4 , (67)

where the stereographic projection (31) has been taken
into account. Moreover, as our solutions fulfill the eikonal
equations

(∇u)2 = 0, (68)

thus

E = 2m2
∫

d3x
∇u∇u∗

(1 + |u|2)2 +
2
e2

∫
d3x

(∇u∇u∗)2

(1 + |u|2)4 . (69)

Now, we can take advantage of the eikonal hopfions and
substitute them into the total energy integral (69). Let us
notice that

∇u∇u∗ =
q2

ã2

[
f ′2 +

(
m2 +

k2

sinh2 η

)
f2
]

= 2
q2

ã2

(
m2 +

k2

sinh2 η

)
f2, (70)

and we have the Jacobian

d3x =
ã3 sinh η

q3
dξdφdη. (71)

Then
E = 2m2ãI1 +

2
ãe2

I2, (72)

where

I1 = 2a2
∫ ∞

0
dη
∫ 2π

0

dξ
q

∫ 2π

0
dφ (73)

×
sinh ηg2

(
m2 + k2

sinh2 η

)
(1 + c20 + a2g2 + 2ac0g cos[mξ + kφ])2

and

I2 = 4a4
∫ ∞

0
dη
∫ 2π

0
dξq

∫ 2π

0
dφ (74)
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Table 1. Minimal energy of the eikonal knots and Faddeev–
Niemi hopfions

Type of knot (m, n) a c0 Emin Enum

(1,1) 1.252 0 304.3 252.0
(1,2) 0.357 0 467.9 417.5
(2,1) 5.23 0 602.7 417.5
(1,3) 0.065 0 658.1 578.5
(2,3) 0.3 0 1257.0 990.5

×
sinh ηg4

(
m2 + k2

sinh2 η

)2

(1 + c20 + a2g2 + 2ac0g cos[mξ + kφ])4
.

As was mentioned before we not only prove that the
eikonal knots provide finiteness of the total energy, but
additionally we find the lowest energy configuration for
fixed k,m. This minimization procedure should be done
with respect to three (in the case of N = 1) parameters:
ã and a, c0. At the beginning we get rid of the scale pa-
rameter ã:

∂E

∂ã
= 0 ⇒ ã =

1
em

√
I2
I1
.

Then the total energy takes the form

E = 4
m

e

√
I1I2. (75)

Now, we calculate the previously defined integrals. This
can be carried out if one observes that∫ 2π

0

dφ
(α+ β cos[mξ + kφ])2

=
2πα

(α2 − β2)
3
2
, (76)

∫ 2π

0

dφ
(α+ β cos[mξ + kφ])4

=
πα(2α2 + 3β2)

(α2 − β2)
7
2

, (77)

∫ 2π

0

dξ
cosh η − cos ξ

=
2π

sinh η
, (78)

∫ 2π

0
dξ(cosh η − cos ξ) = 2π cosh η. (79)

Thus, one finally obtains

I1 = 2a2(2π)2
∫ ∞

0
dηg2

(
m2 +

k2

sinh2 η

)

× 1 + c20 + a2g2

[(1 + c20 + a2g2)2 − 4c20a2g2]
3
2

(80)

and

I2 = 4a4(2π)2
∫ ∞

0
dη sinh η cosh ηg4

(
m2 +

k2

sinh2 η

)2

× (1 + c20 + a2g2)[(1 + c20 + a2g2)2 + 6c20a
2g2]

[(1 + c20 + a2g2)2 − 4c20a2g2]
7
2

. (81)

Table 2. Energy of the knotted eikonal knots

Type of knot (m, n) a c0 E

(1,1) 1.252 0.2 311.2
(1,2) 0.357 0.1 471.9
(2,1) 5.23 0.2 622.3
(1,3) 0.065 0.05 659.5
(2,3) 0.3 0.1 1269.0

It may be easily checked that these two integrals are
finite for all possible profile functions of the eikonal hop-
fions.

Now we are able to find the minimum of the total
energy (75) as a function of a, c0. This has been done
by means of numerical methods. The results Emin for the
simplest knots are presented in Table 1 (we assume m/e =
1). Let us briefly comment on the results obtained.

Firstly, we see that the eikonal knots are “heavier”
than knotted solitons found in the numerical simulations
Enum [13]. This is nothing surprising, as the eikonal knots
do not fulfill the Faddeev–Skyrme–Niemi equations of mo-
tion, that is, do not minimize the pertinent action. How-
ever, the difference is small and is more or less equal to
20%. Strictly speaking the accuracy varies from 15% for
the lightest knots with m = 1 up to 30–35% in the case
of knots with a bigger value of the QH or m parameter.
This result is really unexpected since the eikonal knots
are solutions of such a very simple (first order and almost
linear) equation.

Secondly, the lowest energy configurations are achieved
for c0 = 0. As we know this means that a knot is lo-
cated at η0 = ∞. In other words, for fixed m, k the un-
knot (i.e. configurations where surfaces n3 = const. are
toruses) possesses a lower energy than the other knotted
eikonal solutions. This is a little bit discouraging since
the Faddeev–Niemi hopfions are in general really knotted
solitons. However, one can observe that even a very small
increase of the energy E causes c0 �= 0 (see Table 2). Then,
what is more important, also the ratio c0

a differs from zero
significantly. This guarantees that the knotted structure
of an eikonal solution becomes restored.

Thirdly, there is no m ↔ k degeneracy. The eikonal
knots with m = p, k = q and m = q, k = p do not lead
to the same total energy. In particular, for configurations
with the fixed topological charge, the lowest energy state is
a knot with m = 1. In the case of knots with a bigger value
of the parameter m the total energy grows significantly.

We see that the eikonal knots seem to be quite promis-
ing and can be applied to the Faddeev–Skyrme–Niemi
model. Since our solutions possess a well-defined topolog-
ical charge and approximate the shape as well as the total
energy of the Faddeev–Niemi hopfions with an on aver-
age 20% accuracy, one could regard them as a first step
in the construction of approximated solutions (given by
the analytical expression) to the Faddeev–Skyrme–Niemi
model.

Recently Ward [28] has analyzed the instanton approx-
imations to Faddeev–Niemi hopfions with QH = 1, 2 Hopf
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index. It would be very interesting to relate it with the
eikonal approximation.

It should be noticed that a similar construction pro-
vides approximated, analytical solutions in non-exactly
solvable (2 + 1) dimensional systems. In fact, the baby
Skyrme model [29] and Skyrme model in (3 + 1) dimen-
sions [30,31] can serve as very good examples.

5 Conclusions

In this work multi-soliton and multi-knot configurations,
generated by the eikonal equation in two and three space
dimensions respectively, have been discussed. It has been
proved that various topologically non-trivial configura-
tions can be systematically and analytically derived from
the eikonal equation.

In the model with two space dimensions (which is
treated here just as a toy model for the later investiga-
tions) multi-soliton solutions corresponding to the O(3)
sigma model have been obtained. In particular, we took
in consideration a one- and two-component Ansatz i.e.
N = 1, 2. In this case we restored the standard result that
the energy of a multi-soliton solution depends only on the
total topological number. The way how the topological
charge is distributed on the individual solitons does not
play any role. Thus, for example, the energy of a single
soliton with winding number n is equal to the energy of
a collection of n solitons with the unit charge. In both
cases we observe saturation of the energy–charge inequal-
ity. Moreover, energy remains constant under any changes
of positions of the solitons. It is exactly as in the Bogo-
molny limit where topological solitons do not attract or
repel each other. Due to that the whole moduli space has
been found.

In the most important, the three dimensional space,
case we have found that the eikonal equation generates
multi-knot configurations with an arbitrary value of the
Hopf index. As previously, the Ansatz (34) with one and
two components has been investigated in detail. Let us
summarize the results obtained.

Using the simplest, one-component Ansatz (34) we are
able to construct one- as well as multi-knot configurations
which, in general, consist of the same (topologically) knots
linked together. The elementary knot can have various
topologies. For example a trefoil knot has been derived. It
is unlikely that we have the standard analytical hopfion
solutions which have always toroidal symmetry and are
not able to describe such a trefoil state.

By means of the two-component Ansatz multi-knot
configurations with a central knot located at η = ∞ and a
few satellite knots winding on a torus η = const. have been
obtained. Contrary to the central knot, which is always a
circle, satellite solitons can take various, topologically in-
equivalent shapes known from the N = 1 case.

In addition, we have argued that the multi-knot solu-
tions can be useful in the context of the Faddeev–Skyrme–
Niemi model. Thus, they appear to be interesting not only
from the mathematical point of view (as analytical knots)
but might also have practical applications. We have shown

that the eikonal knots provide an analytical framework in
which the qualitative features of the Faddeev–Niemi hop-
fions can be captured. Moreover, also quantitative aspects
i.e. the energy of the hopfion can be investigated as well.
Although the eikonal knots are approximately 20% heavier
than the numerical hopfions, which is rather a poor accu-
racy in compare with the rational Ansatz for skyrmions,
one can expect that for other shape functions a better
approximation might be obtained.

There are several directions in which the present work
can be continued. First of all one should try to achieve
a better approximation to the knotted solutions of the
Faddeev–Skyrme–Niemi effective model. This means that
new, more accurate shape functions have to be checked. It
is in accordance with the observation that the knots pre-
sented here solve only the integrability condition (eikonal
equation) but not the pertinent dynamical equations of
motion. Therefore, it is not surprising that the eikonal
shape function is the origin for some problems (eikonal
knots are too heavy and tend to unknotted configura-
tions). One can expect that these new shape functions will
not only better approximate the energy of the Faddeev–
Niemi hopfions but also guarantee a non-zero value of the
parameter c0 and ensure the knotted structure of the so-
lutions. We would like to address this issue in our next
paper.

There is also a very interesting question concerning
the shape of the eikonal hopfions. The cores of all knots
presented here are situated on a torus with a constant
radius. However, there are many knots which cannot be
plotted as a closed curve on a torus. Thus one could ask
whether it is possible to construct such knots (non-torus
knots) in the framework of the eikonal equation.

Of course, one might also apply the eikonal equation
to face more advanced problems in the Faddeev–Skyrme–
Niemi theory and investigate time-dependent configura-
tions as for instance scattering solutions or a breather.

On the other hand, one can try to find a Lagrangian
which possesses the topological configurations obtained
here as solutions of the corresponding field equations. One
can for example consider the recently proposed modifica-
tions of the Faddeev–Skyrme–Niemi model which break
the global O(3) symmetry [32–34]. Application of the
eikonal equation to other models of glueballs [35,36],
based in general on the n field, would be also interest-
ing.
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